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Abstract—The inelastic behavior of diagonal braces in building frames subjected to relative horizontal end
displacements is investigated both theoretically and experimentally with particular reference to the
post-buckling behavior. The analysis is based on commonly adopted piecewise linear approximate moment-
thrust interaction curves and bilinear elastic-plastic moment-curvature refations. The maximum loads as
well as the horizontal load-displacement curves observed in the experimental investigation agree well with
the theoretical plgdiction for short braces. In the medium range, the stable branches of the horizontal
load-displacement” curves are followed by a steep unloading branch, with initially positive slope which
becomes infinite at & point beyond which the curves become unstable. The maximum experimental loads are
smaller than the theoretical predictions and occur consistently in the vicinity of the point of infinite slope in
the theoretical horizontal load-dispiacement curves. The experimental curves start to deviate from the
theoretical curves shortly before reaching this point, showing rapid increase in the displacement. Finally,
long braces behave elastically until the maximum loads are attained at the termination of the elastic state.
For practical purposes, a simple means for predicting the carrying capacity of disgonal braces is
recommended in view of these findings.

NOTATION

cross-sectional area
functions of ¢ defined in eqns (29¢) and (31a~¢)
depth of the wide-flange section
modulus of elasticity
tangent modulus
shape factor
horizontal load
H/P,, non-dimensional horizontal load
moment of inertia
length of the brace
bending moment
full plastic bending moment
M]M,, non-dimensional bending moment
axial force
yield axial force
P{P,, non-dimensional axial force
ratio of the flange area to the web area
radius of gyration
shear force
V/P,, non-dimensional shear force
coordinate system
plastic section modulus
non-dimensional plastic hinge rotation
horizontal displacement
Al Ve;), non-dimensional horizontal displacement
yield strain
y/(I'Ve,), non-dimensional lateral deflection
inclination angle of the brace
Ve, (l/r), normalized slenderness ratio
Iz,
X/
0. 0p, 0y Critical stress, proportional limit stress and yield stress, respectively
7 EJ/E, tangent modulus ratio
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tThe research upon which this paper is based was done when the authors were associated with the Division of
Structural Engineering and Mechanics, Asian Institute of Technology, Bangkok, Thailand.
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1. INTRODUCTION

Diagonal bracing systems are recently used for preventing excessive lateral displacement and
improving the lateral stiffness of high-rise structures. The inelastic stability of diagonal braces
subjected to relative horizontal end displacéments is of practical importance in the design of
such structural systems.

The behavior of simply supported and axially loaded compression members, including the
post-buckling range, was investigated by Paris[1}, in which he assumed that the column takes a
sinusoidal deformed shape and the post-buckling range is characterized by the formation of a
plastic hinge at the mid-height after the axial load reaches either the yield load or the Euler load
depending upon the slenderness ratio. Murray (2, 3] and Nutt{4] investigatéd the behavior of the
compression members in triangular frames, assuming that the compression member is ec-
centrically loaded and deflection increases hyperbolically as the load increases and approaches
the critical load in the elastic range. The elastic limit is obtained by considering, for the
post-buckling range, a mechanism formed by the development of plastic hinges in the member.
Neal and Griffith[5] investigated the behavior and collapse loads of rigidly jointed redundant
trusses both theoretically and experimentally, using axial load-deformation relations obtained
from tests.

Wakabayashi et al.[6] predicted the hysteretic behavior of braced frames, in which the
analysis of a simply supported brace subjected to repeated tension-compression loading was
carried out by extending the work done by Paris[1].

igarashi et al.[7] derived a solution of the hysteretic behavior of a simply supported bar
under repeated loading by an incremental analysis based on the non-linear yield condition for a
rectangular cross section. Nonaka[8] approached the same problem, considering, the plastic
interaction for the combined action of bending and axial deformation based on a piecewise
linear yield condition. Similar work was done by Higginbotham[9], who considered the
curvature-deflection relation based on finite deflection theory, and obtained the solution of the
same problem in terms of elliptic integrals. Shibata et al.[10] assumed that the bending
deformation concentrates in the middle portion of the bar, the remaining portion having infinite
rigidity in bending, and Wada, Suto and Fujimoto[11] analysed K-type braced frames by
dividing the member into small elements to take into account the effect of the yield zone
spreading along the longitudinal axis and the strain reversal in the cross section.

In all the theoretical works mentioned above, the brace is treated as a bar subjected to axial
load only, assuming that both ends of the bar are simply supported. In current high-rise building
construction, the diagonal braces are often rigidly connected to the beam-column system. When
such a braced frame is subjected to horizontal loads, relative horizontal story displacement
causes both bending moment and axial thrust (Fig. 1). The purpose of the present study is to
analyse the elastic-plastic behavior of such a brace with particular reference to the deter-
mination of the load carrying capacity and the post-buckling behavior. The resuits of experi-
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Fig. 1. Model of a diagonal brace in building frames.
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mental investigations are compared with predicted values obtained from the theoretical analy-
sis, and simple charts and equations for the determination of the load carrying capacity are
presented to facilitate the design of such braces.

2. THEORETICAL INVESTIGATION
Fundamental consideration

The model proposed in this study is an initially straight, inclined bar of length I, restrained
against rotation at both ends and subjected to a horizontal displacement at the top end while the
bottom end remains at the original position, as shown in Fig. 1. The coordinate system is taken
such that the poxitive x-axis is along the longitudinal axis of the brace with the origin at the
bottom end and the positive y-axis is downward. The inclination angle § is measured between
the brace and the beam. The stress resultants are positive as shown, M (/) and M (0) being the
end moments at the top and bottom ends, respectively, and V the shear force. The axial force P
is positive in compression. The horizontal load H and the horizontal displacement A are shown
in Fig. 1 in the positive directions.

The following assumptions are made to simplify the problem. The top and botton beams to
which the brace is rigidly connected are infinitely rigid compared to the brace, and only
horizontal relative rigid body displacement is allowed under the action of the horizontal load H.
The brace is prismatic and made of wide-flange or box section, the moment-curvature relation is
elastic-plastic, deflections are small, the effect of residual stress is not considered, and only
plane buckling in the plane of the web is allowed. The yield condition adopted is as follows:

Im| =1 for p=0.15 )
|m|=1.18(1-p) for p>0.15 )
in which m = M/M, and p = P/P,; M, and P, denoting the plastic bending moment and the
yield axial force respectively. In Fig. 2, actual and approximate interaction curves for wide-

flange sections are shown together with those for a box section which will be used in the
experimental investigation.

m
I.04 -—~—-— Approximots interaction curves
Wide-flange ,m = 1.18{ 1-p)
Box section,m = 1.314(l~p)
——— Actugl interoction curves
Wide - flonge
Box section
05}
I -
0 0.5 1o P

Fig. 2. Actual and approximate interaction curves.
Elastic state

The deformation of an axially loaded prismatic column subjected to end forces is governed
by

d &
&% ¢2d—£’§= 0 3)

in which n=y/(IVe,), ¢=x/l, ¢ =VI[PI*((EI)] and E, I and €, denote the modulus of
elasticity, the moment of inertia and the yield strain of the material, respectively. Referring to
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Fig. 1, the boundary conditions for the elastic state are as follows:

- =4 _
at £=0, "_dg 0 (4a)
at é€=1, n=-6siné; gd—?=0 (4b)

where 8 = A/(IVe,). The solution of eqn (3) subject to eqns (5a, b) takes the form

sin ¢ (%—f)—sin%+ o¢ cos%

2 (sin %—%cos %)

n{§)=bsind (5)

The total shortening of the brace is equal to the shortening caused by the axial force in
addition to the shortening due to the deflected configuration, i.e.

drne=(8) 1/ ()

in which A = V¢, (I/r) the normalized slenderness ratio of the brace, r = V(I/A), and A denotes
the cross-sectional area. Substituting eqn (5) into eqn (6) leads to

8 [ AP o{¢(2+cos §) - 3sin ¢}
cosf = +52%sin’* @ )]
V?y' ( ) l6(smi—icos%)

which is the equation governing the elastic behavior of the brace, relating 4 to ¢ and A. Observe
in the governing equation that ¢, remains a parameter in the term due to the axial constraint in
the boundary conditions.

In view of eqn (5), the non-dimensional moment m and horizontal load h = H/P,, where H
denotes the horizontal load, can be expressed by

d? ¢ising (12-¢)
m@)=- ()3 =(L)ssin6 8)
().)dg (A) (smg——cos%)
)
2 ~ COSs =
h=pcos0—vsin0=(%) {coso+6\/e,sin20—-£—-$—2—7 9)
sin7—7c0s7

where u = I/ Z,r, v = V|P,, Z, denotes the plastic section modulus of the brace and V the shear
force. Note that p = (¢/A).

The elastic state is terminated when the yield condition is satisfied at any point along the
brace. Since the axial force P is predominant, i.e. p > 0.15, eqn (2) is the yield condition under
consideration and is rewritten for convenience in the form

|m| = 1.81 {1—(%)2}. (10)

The first plastic hinge forms at the point along the brace where

<=0 (1)
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or at the boundary. It should be noted that eqn (8) shows the antisymmetrical nature of the
bending moment distribution. i.e. m(£) = —m(1 — £). Supposing that £ = £* satisfies eqn (11), the
maximum absolute value of the bending moment occurs at £ =£* and & =1-—£*, simul-
taneously, if 0 < ¢* < 1. On the other hand if £* <0 or 1< ¢*, the first pair of plastic hinges
appear at both ends of the brace. Substituting eqn (8) into eqn (11) gives the relation between £*
and ¢ under the condition £* < 1/2 as

(12)

It is obvious that if 0 < ¢ < =, £* <0, i.e. the maximum absolute value of the bending moment
occurs at the ends of the brace and that, if ¢ > m, the maximum absolute value of the bending
moment occurs at the interior points, £ = £* and £ = 1 — ¢*,

Let A* be the normalized slenderness ratio at which the first pair of plastic hinges form at
both ends when ¢ = 7. The bending moments at the ends m(0) and m(1), must satisfy eqn (10)
together with the axial force parameter ¢ = m. Substituting ¢ = 7 and A = A* in eqns (10) and
(7), in view of eqn (8), leads to two equations relating § to A*.

Eliminating 6 from these two equations yields the value of A*, the limiting value of the
normalized slenderness ratio between the ranges A < A*, in which the first pair of plastic hinges
form at both ends, and A = A*, in which the first pair of plastic hinges form at the interior
points. The values of A* for various values of 8 and ¢, are tabulated in Table 1, assuming that
p = 1.05, which is approximately the average value for all wide-flange column sections as will
be explained later. The bending moments m(0) and m(£*) are determined by eqns (8) and (12).
An examination of the expression m(£*) shows that, for positive values of 8, m(£*) is always
positive as long as ¢ <8.986, ¢ = 8.986 being the smallest root of equation obtained by setting
the denominator in eqn (8) equal to zero.

Table 1. Values of A* and A for p = 1.05

Gy ] A* 2
300 3.18 6.45
0.0012 450 3.2 6.56
60° 3.27 6.76

300 3.18 6.46
0.0013 450 3.22 6.58
60° 3.27 6.78

300 3.18 6.47
0.0014 450 3.22 6.59
600 3.27 6.81

300 3.19 6.48

0.0015 450 3.22 6.59
600 3.28 6.82
For A <A*, substituting m(0) into eqn (10) leads to
¢° sin% o\2
(%)Gsino —— =1.18{1—(x)} for 0<A<A®. (13)
2 (sini—icos -i-)

Note that m(0) is positive in the range 0 < ¢ < 27, which is always satisfied in this case. On the
other hand, for A = A*, substituting m(¢*) into eqn (10) leads to

(%)asinez(sm%f%_cos%)= 1.18{1—(%)2} for A=A%. (14)

SS VOL 14NO 7—E
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Elastic-plastic state

The elastic state is terminated when, for a given value of A, § and ¢ satisfy eqn (7) and
either eqns (13) or (14).

Case 1: 0<A <A*. In this case, plastic hinges form at both ends of the brace and the
constants of integration in the solution of eqn (3) are determined, in view of egn (10), from the
following boundary conditions:

at £=0, n=0 m(0)=1.18(1 - p) {15a)
at é=1, n=-8sind; -m(l)=1.18(1-p) (15b)

and the deflection is obtained in the form

() =1.18 (“Ld,,) {1 - (i:l)z} {Si“"’“ —E)-sinéf ), _ 1}—55 sin 0. (16)

sin ¢

Substituting eqn (16) into eqn (6) leads to

oo @) s - (1] sttt
(17)

and the bending moment is obtained as

= 1181 - (&)} iU 0-sin st (18)

The horizontal force becomes, in this case,

h= (%)2 [cos 9 +2.36sin 0 (*—\—/-51) {1 - (1;1)2} -8V, sin? 0]. (19)

)

Case 1(a): 0<A <A. Equation (16) remains valid as long as ¢ <7 when plastic collapse
occurs by axial yielding, i.e. when p = 1. The upper limit of A in this case, A, is obtained by

setting ¢ =7 when P =P, i.e.
P -
= —L = =
=1 \/(EI) A= (20)

The values of A* in Table 1 show that A <A*, and that the range A <A <A* is relatively
narrow.

The behavior of a brace in the range, 0< A < A, is shown in Fig. 3, in which the numbers 14
denote, respectively, a typical elastic state, the termination of the elastic state, a typical
elastic-plastic state and incipient plastic collapse state by axial yielding. In Fig. 3(c), the stress
points for all values of £ lie on a vertical line at every stage of loading as p is constant with
respect to £ and the path for £=0.5 lies on the p-axis as m =0 at this point due to
anti-symmetry. In accordance with previous discussion, Fig. 3(d) clearly shows that the moment
is maximum at £ = 0 for all stages of loading.

Case 1(b): X <A <A*. In this range of A, eqn (16) remains valid until ¢ = 7 when the plastic
hinges at the ends unload and the brace behaves elastically for ¢ > 7 with the following
boundary conditions:

at £=0, n=0; _—= (21a)

at £€=1, n=-6sinb; d—n=a (21b)
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Fig. 3. Behavior of a short brace, Case 1(a).

in which a is negative and calculated from eqn (16) at ¢ = 7. The solution of eqn (3) in this case
takes the form

sin ¢ (%-f)—sin%+¢§cos%
n(€)=(a + 6 sind) +at. (22)
2 (sin%—%cos %)

Substituting eqn (22) into eqn (6) leads to

j2${8 Q2+ cos ¢) -~ 3 sin ¢}

16 (sm ——icos g)

V—cose ("’) +(a+5sind (%+8sine) @)

and the bending moment becomes

vons (14

mé) = ( ) (a+8sin6) L 24
(sm ﬂ~—-cos %—)
The horizontal force in this case becomes
&\ Ssine(d: cos%)-&»Za singz2
h= (—) cos 8 + Ve, sin 8 (25)
A 2 (sin£-1’-cos 2)
2 2 2

This elastic state terminates when plastic hinges form at § = and £=1-¢ such that §
satisfies egn (11). Substituting eqn (24) in eqn (11) yields, for £ < 1/2,

F=2-7 (26)
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Substituting eqn (24) with & = £ in eqn (10) leads to
(&)(aﬂSsinG) ¢ =1.18{1—(g)-} for A<A<A* 27N
A 2 (sm ¢ ¢ d’) A
2

3 COSE‘

The solution of eqns (23) and (27) for ¢ and § determines the termination of the elastic state in
this case.

For further loading, the plastic hinges at ¢ =¢ and £ =1-¢ divide the brace into three
domains. Taking advantage of anti-symmetry, only two domains, i.e. 0<é<fand E<¢<1/2,
need be considered with the respective solutions, 1,(£) and 7:(¢), which contains 8 constants of
integration. The boundary and continuity conditions are:

at £€=0; 7,=0; %—Z—'=a (28a)
at £=£ m=m; mE)=myd)=118(1-p); 0i(&)=v:(f) (28b)
at £=1/2; nz=—%sin6; mg(%>=0. (28¢)

In view of eqns (28a-c), the solutions take the form

m(f)--—[lﬁé{x-( )}{2sm<p§ @ cos o + (1 = 26)} — & sin 8{sin g (¢ — &)
—wecos¢£+'sin¢e‘}—a{sin<p(§—5‘)+(1—2§)sin¢§‘}] for 0s¢sé (29a)

)= o (L1~ (2) {5, SRelB0). o1 20)]

_ - .= = 1
—8sin0(sin<p§—<p§cos¢§)-a(l—2§)sm<p§] for §s§<§ (29b)
in which
B, =2sin of - ¢ cos ¢é&. (29¢c)
Substituting eqns (29a-c) in eqn (6) leads to
v—'COSO ( ) +£—§(B3 +B4 “‘Bs B(,)+_(BJ—B4—Bi +Bg)Sln2(p§
+ 8 (B2 + B + 2 (B - By sin ¢ + £ {(BsBa - BsBy) cos 20
4 (Ds §)+ 4 (Bs 5)sm<p2(34 sBs) cos 2¢¢
— B3Ba- BsBscos o} +2B: {BTM By sin of + By (cos gf — 1)
+ Bs (sin ¢ — sin 2¢€) + By (cos —‘g—- cos (pf_)} (30)
in which
B:=- BL [M{l - (%)}— 5 sin 8(p cos @€) - 2a sin ¢§] (31a)
Bs=———a[—B2 {31b)

@
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2
B“:_E“[II:ZA {l (—:i) }-(a+8 sin 8)sin qog'] 3ic)
1.184 «p)’} cos ¢/2
Bi=-(—=){1- (%) | —8= (31d)
( pe’ ){ (A sing(1/2-§)
Bq=- Bstan % (31e)

In view of eqns (29a—c). the bending moments and horizontal force are obtained as
2 2 -
m(€)= [1 18{ (ﬂ) } (25in gt = ¢ c0s 9) L~ (a + 5 sin ) sin tp(f'—f)] (32a)

"
(&)=1.18{1- (2) | 2ned2=0 B
ma(£) I‘{ (A)}sincp(l/Z“f) -

h= (%)2 [c 0s 6 - l‘%‘-ﬁ {zi:'\ {1 (‘:)2}-— 8 sin 6 (¢ cos pf) — 2a sin :pf.}] (33)

Substituting egn (32a) in egn (10) with £ =0 leads to

I;, [ I.18¢ { (i)2}+&f—z(a + & sin 8) sin {pg] = 1.18{1 —(%)2} (34)

This elastic-plastic state terminates when plastic hinges again form at the ends of the brace, and
a mechanism results when, for a given value of A, § and ¢ satisfy eqns (30) and (34).

Since the values of A and A* are very close as shown in eqn (20) and Table 1, the value of p
is nearly equal to unity when the plastic hinges at the ends start to unload at ¢ = m, and thus the
value of £ given by eqn (26) is nearly equal to zero. The numerical calculation is therefore very
sensitive to ¢ and £ for this range of A, i.e. A <A <A*.

Case 2: A =A*. For A =A*, interior plastic hinges form at £=¢£* and £=1—£* at the
termination of the elastic state. As in Case 1(b), the plastic hinges divide the brace into three
domains with the same boundary and continuity conditions except that, in this case, the slope at
the ends vanishes, i.e. a = 0. Therefore eqns (29a~¢) to eqn (34) inclusive are applicable to this
case with @ = 0 and £ replaced by £*.

Case 2(a): A* €A <X. Referring to eqn (8), observe that m(0) is positive if 0< ¢ <2. In
view of egns (7) and (14), if ¢ <27 when the elastic state terminates as defined by loading
Stage 2 in Fig. 4(c), the brace can sustain further load in the elastic-plastic state as shown in
Fig. 4(a) as the stress points move from loading Stages 2 to 3. Observe that the maximum
moment occurs at £=£*=0.169 at loading Stage 2 and remains there through subsequent
loading stages. Furthermore it decreases from loading Stages 2 to 3, and increases again after
loading Stage 3, the incipient mechanism state.

Case 2(b): A = . If ¢ > 2 when the elastic state terminates as defined by loading Stage 2 in
Fig. 5(c), the h — § curve unloads from points 2 to 3 in the elastic~plastic state as shown in Fig.
5(a) as the stress pomts move from loading Stages 2 to 3.

The value of X is determined by eliminating 6 from two equations relating § to A, which
are obtained by setting ¢ — 2 in eqns (7) and (14). For x = 1.05, the values of A are tabulated in
Table 1 for typical values of ¢, and 6.

In the above analysis, it is tacitly assumed that the interior plastic hinges which form at
£=£* and £=1-~£* at the initiation of the elastic-plastic state remain stationary. This
assumption is verified by numerical calculations.

Mechanism state

Case 1(a): 0 < A < A. As discussed before, in this range of A, the mechanism state is reached
when p = 1 and the value of § at incipient plastic collapse, indicated by loading state 4 in Fig.
3(a), is given by
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Fig. 4. Behavior of a medium brace, Case 2(a).

2 3 m
06 4 0.10
- 005
04} ) o
h L M =108 -0.05
€y =00012
ozl g =48° -0 10
4, =220
L A =762
1 1 £ L 3 i i {(c) Paths of stress points.
o} -2 &
& (x10%)
{a} Horszontal lood - displocement curve.
(o113
4
(oYl
005

-005}) ‘
-010
i i H
) o2 04 0.6 0.8 1o 0 0209 0.25€*0.288 0s
{b) Defiection Profiles. {d) Bending moment distribution

Fig. 5. Behavior of medium brace, Case 2(b).

_ cos 8 — V(cos® 8 - 2¢, sin’ §)

8 Ve, sin* 8

(35)

obtained from the solution of eqn (17) with ¢/A set equal to unity, It is of interest to note that
the brace assumes a straight configuration at loading Stage 4 in Fig. 3(b).

Case 1(b): A <A <A*. In this range of A, when 5 and ¢ satisfy eqns (30) and (34) at the
termination of the elastic—plastic state, the second pair of plastic hinges form at the ends. In this
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case, the brace is divided into three domains and the solutions 7,(¢) for 0=< ¢ < ¢ and ns(¢) for
£ < £ < 1/2 must be considered. The boundary and continuity conditions defined by eqns (28a—c)
remain valid with the exception that the second condition in eqn (28a) becomes

at £€=0, m(0)=-1.18(1-p). (36)

Following similar procedure as before leads to

1.18A O, s . - ) -
n,(§)=m{]—(%)}{sm¢(§—§)+sm¢p§+(l-2§)smqo§}—6§sm0 for O0s¢=s¢
(37a)

S 1t S PO AN O PSS O —vsino (-

n2(£) mpzsinqa(l/z-g){] (A)}{qu,(Z §)+(1 2£)sm¢(2 §)}
~8¢sing for f=fsi (37b)

E.

Substituting egns (37a,b) in eqn (6) yields an axial force-displacement relation similar in
form as eqn (30) but, in this case, the functions B,, B; and B, defined in eqn (31a—c) take the
form

B:=—5 sin 6 - %%é { 1- (f)z} (38a)
B= (M) {1- (¢} ot e
5= L5}
The expressions for the bending moments and the horizontal force become respectively,
mi(€)=1.18 {1 - (f)z} sin Mi;f;g sin p¢ (392)
ma£) = 1.18 { 1- (f)z} :%;LSZ_:% (39b)
h= ({—)2 [cos 6 +2.36sin 6 (%:;,‘l) {1 - (i:i)z} +8Ve, sin? o] (40)

Case 2: A = A*. In this case, when § and ¢ satisfy eqns (30) and (34) with a =0 and £
replaced by £* at the termination of the elastic~plastic state, the second pair of plastic hinges
form at the ends as in Case 1(b) and the solutions, eqns (37a,b)-(40) inclusive, are applicable
with £ replaced by &*.

It is of interest to note that the mechanism states of Case 2(a) and Case 2(b) are governed by
the same set of equation discussed above. The absolute values of the moment at £ =0 and
£ = £* are equal throughout this state starting from incipient mechanism state, loading Stage 3
in Figs. 4(d) and 5(d), in which a typical mechanism state is indicated by loading Stage 4.

For long braces, the unloading horizontal load-displacement curves in the elastic-plastic and
mechanism states are unstable. The maximum load for such a brace occurs at the termination of
the elastic state and agrees well with the elastic buckling load of a fixed end column buckling in
an anti-symmetrical mode. This load corresponds to the smallest root of the equation obtained
by setting the denominator of eqn (8), the expression for the bending moment in elastic state,
equal to zero.
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3. EXPERIMENTAL INVESTIGATION

Test specimens

The typical test specimen shown in Fig. 6(a) is designed to simulate a braced frame system
such as the one shown in Fig. 6(d) in such a way that only the lateral load resisted by the
diagonal braces is measured in the tests. The specimen is made up of two braces of box section,
50 mm square and 2 mm thick, welded at the top to a heavy wide-flange loading block. The
mechanical properties of the material shown in Table 2 are average vajues obtained from
tension tests performed in accordance with ASTM Standards A370-68{12].

Test setup

Figure 7 shows a schematic diagram of the test apparatus, and an overall view of a typical
test setup is shown in Fig. 8. In order to prevent the rotation and lateral translation of the
loading block, sixteen steel stay rods of 0.5in. diameter, attached to the loading block, are
installed with approximately 300 kg of pretension force in each rod prior to the test. The
downward movement of the loading block, i.e. A shown in Figs. 1 and 6(d), is measured by the
dial gage G in Fig. 7. The transverse deflection of each brace are measured by a group of dial
gages H placed at equal intervals along the length of the brace. The rotation and lateral
translation of the loading block, if any, are detected by five dial gages J in Fig. 7(c). The initial
crookedness of the braces after welding to the base beam, measured in terms of transverse
deviation from line ab in Fig. 6(a), was found to be less than 0.24% of the length of the brace in
all test specimens. The effects of initial crookedness and residual stresses are not considered in
this study.

L 30 mm.
: : b Axis of symmetry T}
e * = P i A |~ Looding block
% L a = %lt . a 50 mm ‘ _Ji2mm
| H [ 2 . ;‘
. \ —2mm

(¢} Cross sechion of braces.

Fixed end Fixed end

ui by

{d) Diogonal braces simulated by
specimen.

Fig. 6. A typical test specimen with foading block.

Table 2. Dimensions and properties of test specimens

Spectman No.|Case|t(cm){I(cm*)|A(cm®)| Zp(cm®)| t/r | 1 |o(degree)
1 1 {100.0{17.47 {4,219 | 7.876 | 49.1[1.90] 45
2 2 [210.0017.47 [4.218 | 7.877 |103.2|3.99] 30
3 2 [198.017.47 |4.220 | 7.878 [ 97.3[3.76] 45
4 2 |205.0117.47 [4.219 | 7.877 [100.7{3.08] 60
5 2 |295.0[17.47 [4.220 | 7.876 [144.9(5.60] 45

Mechanical properties:
o, = 3,076 kg/cm®, E = 2,059 x 10° kg/cn?, €y = 0.001494
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The axial strains in each brace are measured by three sets of four wire strain gages L. each
set mounted along the middie lines of the four faces of the box section. The axial strains in the
stay rods at each stage of loading are measured by wire strain gages M. When the loading block
moves downward under applied load, the tensions in the stay rods are recorded and their
components in the vertical direction are subtracted from the reading of the load cell (D) to yield
the load carried by the braces.

Test results

The test results obtained for the five specimens listed in Table 2 are shown in Figs. 9-13 in
the form of horizontal load-displacement curves and deflection profiles. The theoretical results
predicted by the proposed analysis are also plotted in the figures for comparison. The latter are
based on a piecewise linear approximation to the actual interaction curve for box section
determined for the specimens tested, as shown in Fig. 2. Observe that the actual and
approximate curves are practically identical in the range 0.45 < p <1, which is the range of
interest. The values of u computed for all five specimens are equal for practical purposes and
taken equal to 1.0899.

The experimental and theoretical & — 8 curves agree very well in the elastic range. Test
specimen No. 1 falls under Case 1(a) in which A < A. The theoretical prediction that the braces
attain the maximum load at incipient plastic collapse was clearly observed experimentally as
shown in Fig. 11(a). Gradual unloading takes place after the displacement increases and
out-of-plane buckling occurs at large displacement at which rotation and lateral translation of
the loading block were observed. The deflection profiles shown in Fig. 9(b) agree well and both
the experimental and theoretical profiles are straight in the plastic collapse state as predicted.

The other four specimens belong to Case 2 in which A > A*. Figures 9(a)-13(a) show that
both theoretical maximum load and the stable segment of the unloading branch of the h -3
curve with positive slope which follows were not observed experimentally. Due to initial
crookedness, residual stresses and imperfect symmetry of the specimens,  increases rapidly in
the experimental curve which differs from the stable elastic branch of the theoretical curve and

3.
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h 04k f— 4 =1.0899
€y 20001494
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(b) Deflection profiles.
Fig. 9. Test specimen No. 1, Case 1.
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approaches the unstable branch in the vicinity of the point on the unloading curve where the
slope is vertical. It is obvious that the effect of initial imperfections, such as crookedness and
residual stresses, is responsible for the difference between the theoretical and the experimental
results. However, it is important to observe that the experimental maximum loads of braces
with unavoidable initial imperfections consistently approximate the theoretical loads predicted
by this point.

The defiection profiles shown in Figs. 9(b)~13(b) demonstrates excellent agreement in the
elastic range. Although the experimental curve deviates from the theoretical one in the vicinity
where the slope of the theoretical curve becomes vertical, the shape of two profiles neverthe-
less remains similar and deviates only in amplitude. Out-of-plane buckling occurs soon after the
experimental maximum loads are reached when rotation and lateral translation of the loading
block take place. In the theoretical analysis, it is tacitly assumed that the interior plastic hinge
locations remain stationary. The kinks in both the theoretical and experimental deflection
profiles bear out this assumption.

In all the four tests, out-of-plane buckling occurs after the maximum load is reached
because of the torsionally weak support condition at the top of the specimen. Thus, the
experimental unloading curves after out-of-plane buckling takes place cannot be compared with
the theoretical curve. However, it is believed that this support condition did not affect the
in-plane behavior of the brace before out-of-plane buckling occurs, since no significant rotation
and lateral transiation were observed by the monitoring dial gages on the loading block until
after the maximum load carrying capacity of the braces is reached.

4, DISCUSSION AND CONCLUSION

Post-buckling behavior of short-columns

It is interesting to compare the results of the proposed analysis with those given by Paris[1]
and Nonakal[8], both of whom dealt with a simply supported bar subjected to a compressive
axial load. The axial load-displacement relation is linear in the elastic range. They assumed that,
for the short bar, lateral deflection must occur when the load reaches the yield load and a
plastic hinge develops at the mid-point of the bar whose behavior is governed by an assumed
yield condition. The post-yielding axial load-displacement curve unloads in the mechanism state
and is unstable. In Fig. 9a), the theoretical curve shows that specimen No. 1, a short brace,
sustains the maximum load after axial yielding occurs at incipient plastic collapse. This
prediction is confirmed by the experimental curve in the same figure, and the same phenomena
were observed in the experimental investigation by Paris[1].

Parametric study

An investigation on compact wide-flange column sections with depth from 4 to 14 in. reveals
that u ranges from 1.04 to 1.06 with a mean value of 1.05. Lee and Hauck[13] found that the
values of R, the ratio of the flange area to be web area, for a similar grouping of wide-flange
column sections with depth from 8 to 14 in., range from 2.9 to 3.6 and suggested that R = 3.25,
which is a median and a mean value, be used in general study since the column strength is
relatively insensitive to minor variation in R. The value of u corresponding to R = 3.25 is 1.041.
On the other hand, u can also be expressed by d/(2fr) where d and f denote the depth and the
shape factor of the wide-flange section, respectively. Galambos[14] observed that the value of
dfr is nearly constant and approximately equal to 2.38. The value of f for wide-flange column
sections ranges from 1.10 to 1.23 with an average of 1.137 and a mode of 1.115{15]. The values
of u corresponding to d/r=2.38 and f = 1.137 and 1.115 are 1.047 and 1.067, respectively. In
the following parametric study of horizontal load-displacement relations, u will be taken equal
to 1.05 and the other parameters considered are: 8 = 30°, 45°, 60°; A = 2.08 to 13.86 (I/r = 60 to
400) and €. = 0.0012.

Horizontal load-displacement relation. Figures 14(a—c) show the behavior of h plotted vs
arguments of & for various values of A with p = 1.05, ¢, =0.0012 and 6 = 30°, 45° and 60°.
Observe from these curves that the point with vertical slope will appear only in the middle
range of A. The same phenomenon is observed in the numerical results obtained by Paris{1] for
a simply supported column whose yield load and Euler load are nearly equal.

Horizontal load-slenderness ratio relation. Figure 15 shows, in solid lines, the variation of
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Fig. 14. Horizontal load-displacement curves.

the horizontal load h* plotted vs arguments of the slenderness ratio A for the various values of
8, where k* denotes the smaller of either the maximum load or the load at which the siope of
the horizontal load-displacement curve becomes infinity. The dashed lines show the values of
p*cos 8 where p* is the axial force corresponding to h*. The two sets of curves are almost
identical since the contribution of the shear force to h* is very small in comparison with that of
p*cos 8.

Conclusion

Figure 16 shows, in solid lines, the variation of the axial force p* plotted vs arguments of A
for various values of 8. The dotted lines represent the maximum axial force and the dashed lines
the tangent modulus load and the elastic buckling load p. of a fixed-end column buckling in
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anti-symmetrical mode. The latter is given by
pe = (8.986/A ). (41)

Observe in eqn (8) that m(£) approaches infinity as ¢ approaches 8.986. The tangent modulus
load is obtained assuming that the tangent modulus ratio r = E/E is given by [16]
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- (oy —ac)oe (42)
(o, —0p)a,

in which E,, . and o, denote the tangent modulus, the critical stress and the proportional limit,

respectively. In this analysis, o, is taken equal to 0.8¢..

It is interesting to note that the maximum axial force agrees well with the tangent modulus
load and the elastic buckling load. The effect of § on p*—A curves in the range studied,
30°< 6 < 60°, is small and can be neglected. In Fig. 17, the p* — A curve for 8 = 45° is shown in
solid line with the resuits of the following empirical formulas in dashed line:

p*=1 for 0<Asnm (43a)
p*=00065A—-0.15A +1.4 for m<A<122 (43b)
p*=(8.986/A) for 12.2<A. (43c)

Since the value of the horizontal load h* is very close to p* cos 8, for practical purposes, it can
be simply obtained by h* = p* cos 6, where the value of p* is given in eqns (43a—c).
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